65 research outputs found

    A Single-Valued Neutrosophic Linguistic Combined Weighted Distance Measure and Its Application in Multiple-Attribute Group Decision-Making

    Get PDF
    The aim of this paper is to present a multiple-attribute group decision-making (MAGDM) framework based on a new single-valued neutrosophic linguistic (SVNL) distance measure. By unifying the idea of the weighted average and ordered weighted averaging into a single-valued neutrosophic linguistic distance, we first developed a new SVNL weighted distance measure, namely a SVNL combined and weighted distance (SVNLCWD) measure

    CLAP-PRE: Certificateless Autonomous Path Proxy Re-Encryption for Data Sharing in the Cloud

    No full text
    In e-health systems, patients encrypt their personal health data for privacy purposes and upload them to the cloud. There exists a need for sharing patient health data with doctors for healing purposes in one’s own preferred order. To achieve this fine-gained access control to delegation paths, some researchers have designed a new proxy re-encryption (PRE) scheme called autonomous path proxy re-encryption (AP-PRE), where the delegator can control the whole delegation path in a multi-hop delegation process. In this paper, we introduce a certificateless autonomous path proxy re-encryption (CLAP-PRE) using multilinear maps, which holds both the properties (i.e., certificateless, autonomous path) of certificateless encryption and autonomous path proxy re-encryption. In the proposed scheme, (a) each user has two public keys (user’s identity and traditional public key) with corresponding private keys, and (b) each ciphertext is first re-encrypted from a public key encryption (PKE) scheme to an identity-based encryption (IBE) scheme and then transformed in the IBE scheme. Our scheme is an IND-CPA secure CLAP-PRE scheme under the k-multilinear decisional Diffie–Hellman (k-MDDH) assumption in the random oracle model

    CLAP-PRE: Certificateless Autonomous Path Proxy Re-Encryption for Data Sharing in the Cloud

    No full text
    In e-health systems, patients encrypt their personal health data for privacy purposes and upload them to the cloud. There exists a need for sharing patient health data with doctors for healing purposes in one’s own preferred order. To achieve this fine-gained access control to delegation paths, some researchers have designed a new proxy re-encryption (PRE) scheme called autonomous path proxy re-encryption (AP-PRE), where the delegator can control the whole delegation path in a multi-hop delegation process. In this paper, we introduce a certificateless autonomous path proxy re-encryption (CLAP-PRE) using multilinear maps, which holds both the properties (i.e., certificateless, autonomous path) of certificateless encryption and autonomous path proxy re-encryption. In the proposed scheme, (a) each user has two public keys (user’s identity and traditional public key) with corresponding private keys, and (b) each ciphertext is first re-encrypted from a public key encryption (PKE) scheme to an identity-based encryption (IBE) scheme and then transformed in the IBE scheme. Our scheme is an IND-CPA secure CLAP-PRE scheme under the k-multilinear decisional Diffie–Hellman (k-MDDH) assumption in the random oracle model

    Consensus for non-linear multi-agent systems modelled by PDEs based on spatial boundary communication

    No full text
    There is spatio-temporal nature for many multi-agent systems such as infight hose-and-drogue aerial refuelling systems. To deal with consensus control of such cases, this study establishes a non-linear leader-following spatio-temporal multi-agent system modelled by partial differential equations. Initially, a boundary controller based on boundary coupling is studied to ensure consensus of the multi-agent system. A sufficient condition on the existence of the controller for consensus is presented in terms of linear matrix inequalities. To simplify the obtained result, a second boundary controller is studied and a simple sufficient condition of its existence is investigated. Finally, two numerical examples demonstrate the effectiveness of the proposed methods. The merits of the proposed controllers lie in making use of only spatial boundary communication and requiring actuators and sensors only at spatial boundary positions

    Effects of Ketamine on Neuronal Spontaneous Excitatory Postsynaptic Currents and Miniature Excitatory Postsynaptic Currents in the Somatosensory Cortex of Rats

    No full text
    Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex by using the whole-cell patch-clamp method. Methods: Sprague-Dawley rats (11–19 postnatal days, n=36) were used to obtain brain slices (300 μM). Spontaneous excitatory postsynaptic currents (data from 40 neurons) were recorded at a command potential of -70 mV in the presence of bicuculline (a competitive antagonist of GABAA receptors, 30 μM) and strychnine (glycine receptor antagonist, 30 μM). Miniature excitatory postsynaptic currents (data from 40 neurons) were also recorded when 1 μM of tetrodotoxin was added into the artificial cerebrospinal fluid. We used GraphPad Prism5for statistical analysis. Significant differences in the mean amplitude and frequency were tested using the Student paired 2-tailed t test. Values of P<0.05 were considered significant. Results: Different concentrations of ketamine inhibited the frequency and amplitude of the spontaneous excitatory postsynaptic currents as well as the amplitude of the miniature excitatory postsynaptic currents in a concentration-dependent manner, but they exerted no significant effect on the frequency of the miniature excitatory postsynaptic currents. Conclusion: Ketamine inhibited the excitatory synaptic transmission of the neurons in the primary somatosensory cortex. The inhibition may have been mediated by a reduction in the sensitivity of the postsynaptic glutamatergic receptors

    Advances in the application of Mxene nanoparticles in wound healing

    No full text
    Abstract Skin is the largest organ of the human body. It plays a vital role as the body’s first barrier: stopping chemical, radiological damage and microbial invasion. The importance of skin to the human body can never be overstated. Delayed wound healing after a skin injury has become a huge challenge in healthcare. In some situations, this can have very serious and even life-threatening effects on people’s health. Various wound dressings have been developed to promote quicker wound healing, including hydrogels, gelatin sponges, films, and bandages, all work to prevent the invasion of microbial pathogens. Some of them are also packed with bioactive agents, such as antibiotics, nanoparticles, and growth factors, that help to improve the performance of the dressing it is added to. Recently, bioactive nanoparticles as the bioactive agent have become widely used in wound dressings. Among these, functional inorganic nanoparticles are favored due to their ability to effectively improve the tissue-repairing properties of biomaterials. MXene nanoparticles have attracted the interest of scholars due to their unique properties of electrical conductivity, hydrophilicity, antibacterial properties, and biocompatibility. The potential for its application is very promising as an effective functional component of wound dressings. In this paper, we will review MXene nanoparticles in skin injury repair, particularly its synthesis method, functional properties, biocompatibility, and application

    3D-Printed Poly (P-Dioxanone) Stent for Endovascular Application: In Vitro Evaluations

    No full text
    Rapid formation of innovative, inexpensive, personalized, and quickly reproducible artery bioresorbable stents (BRSs) is significantly important for treating dangerous and sometimes deadly cerebrovascular disorders. It is greatly challenging to give BRSs excellent mechanical properties, biocompatibility, and bioabsorbability. The current BRSs, which are mostly fabricated from poly-l-lactide (PLLA), are usually applied to coronary revascularization but may not be suitable for cerebrovascular revascularization. Here, novel 3D-printed BRSs for cerebrovascular disease enabling anti-stenosis and gradually disappearing after vessel endothelialization are designed and fabricated by combining biocompatible poly (p-dioxanone) (PPDO) and 3D printing technology for the first time. We can control the strut thickness and vessel coverage of BRSs by adjusting the printing parameters to make the size of BRSs suitable for small-diameter vascular use. We added bis-(2,6-diisopropylphenyl) carbodiimide (commercial name: stabaxol&reg;-1) to PPDO to improve its hydrolytic stability without affecting its mechanical properties and biocompatibility. In vitro cell experiments confirmed that endothelial cells can be conveniently seeded and attached to the BRSs and subsequently demonstrated good proliferation ability. Owing to the excellent mechanical properties of the monofilaments fabricated by the PPDO, the 3D-printed BRSs with PPDO monofilaments support desirable flexibility, therefore offering a novel BRS application in the vascular disorders field
    • …
    corecore